A <var>φ</var><sub>1,3</sub>-Filtration of the Virasoro Minimal Series <em>M</em>(<em>p</em>, <em>p'</em>) with 1 < <em>p'</em>/<em>p</em> < 2
Boris Feigin
Independent University of Moscow, Russian FederationEvgeny Feigin
National Research University Higher School of Economics, Moscow, Russian FederationM. Jimbo
University of Tokyo, JapanTetsuji Miwa
Kyoto University, JapanYoshihiro Takeyama
Graduate School of Pure and Applied Sciences, Ibaraki, Japan

Abstract
The filtration of the Virasoro minimal series representations M__r,s(p, p') induced by the (1, 3)-primary field φ1,3(z) is studied. For 1 < p'/p < 2, a conjectural basis of M__r,s(p, p') compatible with the filtration is given by using monomial vectors in terms of the Fourier coeffcients of φ1,3(z). In support of this conjecture, we give two results. First, we establish the equality of the character of the conjectural basis vectors with the character of the whole representation space. Second, for the unitary series (p' = p + 1), we establish for each m the equality between the character of the degree m monomial basis and the character of the degree m component in the associated graded module gr(M__r,s(p, p+1)) with respect to the filtration defined by φ1,3(z).
Cite this article
Boris Feigin, Evgeny Feigin, M. Jimbo, Tetsuji Miwa, Yoshihiro Takeyama, A <var>φ</var><sub>1,3</sub>-Filtration of the Virasoro Minimal Series <em>M</em>(<em>p</em>, <em>p'</em>) with 1 < <em>p'</em>/<em>p</em> < 2. Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, pp. 213–257
DOI 10.2977/PRIMS/1210167327