Klyachko’s Theorem in Semi-finite von Neumann Algebras
Tetsuo Harada
Fukuoka, Japan

Abstract
Let A be a von Neumann algebra and A be the set of all τ-measurable operators. For positive elements A and B in A we prove that
∫_K_ µs (A + B) ds ≤ ∫_K_ µs (A) ds + ∫_K_ µs (B) ds,
where µ(·) denotes the generalized s-number and I, J, and K are on an analogue of the Klyachko list.
Cite this article
Tetsuo Harada, Klyachko’s Theorem in Semi-finite von Neumann Algebras. Publ. Res. Inst. Math. Sci. 43 (2007), no. 4, pp. 1125–1137
DOI 10.2977/PRIMS/1201012382