Eigenvalue Asymptotics for the Schrödinger Operator with Steplike Magnetic Field and Slowly Decreasing Electric Potential
Shin-ichi Shirai
Ritsumeikan University, Shiga, Japan

Abstract
In this paper we consider the two-dimensional Schrödinger operator of the form:
HV = − | ∂2 | + ( | 1 | ∂ | − b(_x_1))2 + V(_x_1, _x_2), |
∂_x_12 | i | ∂_x_2 |
where the magnetic field B(_x_1) = rot(0, b(_x_1)) is monotone increasing and steplike, namely the limits lim _x_1 →±∞ B(_x_1) = _B_± exist with 0 < _B_− < B+ < ∞, and V is the slowly power-decaying electric potential. The spectrum σ(_H_0) of the unperturbed operator H_0 (= HV with V = 0) has the band structure and HV has the discrete spectrum in the gaps of the essential spectrum σ_ess (HV) = σ(_H_0). The aim of this paper is to study the asymptotic distribution of the eigenvalues near the edges of the spectral gaps. Using the min-max argument, we prove that the classical Weyl-type asymptotic formula is satisfied under suitable assumptions on B and V.
Cite this article
Shin-ichi Shirai, Eigenvalue Asymptotics for the Schrödinger Operator with Steplike Magnetic Field and Slowly Decreasing Electric Potential. Publ. Res. Inst. Math. Sci. 39 (2003), no. 2, pp. 297–330
DOI 10.2977/PRIMS/1145476105