On a Generalized 2 + 1 Dispersive Water Wave Hierarchy
Pilar R. Gordoa
Universidad de Salamanca, SpainNalini Joshi
The University of Sydney, AustraliaAndrew Pickering
Universidad Rey Juan Carlos I, Móstoles (Madrid), Spain
Abstract
We present a generalized non-isospectral dispersive water wave hierarchy in 2+1 dimensions. We characterize our entire hierarchy and its underlying linear problem using a single equation together with its corresponding non-isospectral scattering problem. This then allows a straightforward construction of linear problems for the entire generalized 2 + 1 hierarchy. Reductions of this hierarchy then yield new integrable hierarchies in 1+1 dimensions, and also new integrable hierarchies of ordinary differential equations, all together with their underlying linear problems. In particular, we obtain a generalized hierarchy; this includes as special cases both a hierarchy of ODEs having the fourth Painlevé equation as first member, and also a hierarchy of ODEs having the second Painlevé equation as first member. All of these hierarchies of ordinary differential equations, as well as their underlying linear problems, are new; both the hierarchy and the hierarchy obtained here are different from those which have previously been given.
Cite this article
Pilar R. Gordoa, Nalini Joshi, Andrew Pickering, On a Generalized 2 + 1 Dispersive Water Wave Hierarchy. Publ. Res. Inst. Math. Sci. 37 (2001), no. 3, pp. 327–347
DOI 10.2977/PRIMS/1145477227