Asymptotic Expansion of Singular Solutions and the Characteristic Polygon of Linear Partial Differential Equations in the Complex Domain
Sunao Ōuchi
Sophia University, Tokyo, Japan

Abstract
Let P(z, ∂) be a linear partial differential operator with holomorphic coefficients in a neighborhood Ω of z = 0 in ℂ_d_+1. Consider the equation P(z, ∂)u(z) = f(z), where u(z) admits singularities on the surface K = {_z_0 = 0} and f(z) has an asymptotic expansion of Gevrey type with respect to _z_0 as _z_0 → 0. We study the possibility of asymptotic expansion of u(z). We define the characteristic polygon of P(z, ∂) with respect to K and characteristic indices. We discuss the behavior of u(z) in a neighborhood of K, by using these notions. The main result is a generalization of that in [6].
Cite this article
Sunao Ōuchi, Asymptotic Expansion of Singular Solutions and the Characteristic Polygon of Linear Partial Differential Equations in the Complex Domain. Publ. Res. Inst. Math. Sci. 36 (2000), no. 4, pp. 457–482
DOI 10.2977/PRIMS/1195142869