The Moyal Product and Spectral Theory for a Class of Infinite Dimensional Matrices

  • Frank Hansen

    University of Copenhagen, Denmark

Abstract

We study tempered distributions that are multipliers of the Schwartz space relative to the Moyal product. They form an algebra N under the Moyal product containing the polynomials. The elements of N are represented as infinite dimensional matrices with certain growth properties of the entries. The representation transforms the Moyal product into matrix multiplication. Each real element of N allows a resolvent map with values in tempered distributions and an associated spectral resolution. This giaes a tool to study distributions associated with symmetric, but not necessarily self-adjoint operators.

Cite this article

Frank Hansen, The Moyal Product and Spectral Theory for a Class of Infinite Dimensional Matrices. Publ. Res. Inst. Math. Sci. 26 (1990), no. 6, pp. 885–933

DOI 10.2977/PRIMS/1195170568