JournalsprimsVol. 26, No. 6pp. 967–978

The Structure and Represenation of a <i>C</i>*-Algebra Associated to the Super-Poincaré Group

  • Keith C. Hannabuss

    Balliol College, Oxford, UK
  • Winfried R.E. Weiss

    University of Oxford, United Kingdom
The Structure and Represenation of a <i>C</i>*-Algebra Associated to the Super-Poincaré Group cover
Download PDF

Abstract

The representation theory of a class of algebras associated to certain graded Lie groups is investigated. To a group whose even part is central is associated a natural involutive algebra all of whose *-representations factor through a quotient algebra of continuous Clifford algebra-valued fields. The irreducible representations of crossed products of the algebra by a Lie algebra, such as the super-Poincaré group, are then constructed by Takesaki's method. It is then shown that they may also be constructed by Rieffel's C*-algebraic induction. Tensor product decompositions are briefly discussed.

Cite this article

Keith C. Hannabuss, Winfried R.E. Weiss, The Structure and Represenation of a <i>C</i>*-Algebra Associated to the Super-Poincaré Group. Publ. Res. Inst. Math. Sci. 26 (1990), no. 6, pp. 967–978

DOI 10.2977/PRIMS/1195170571