A Generalization of Eichler Integrals and Certain Local Systems over Spin Riemann Surfaces

  • Kyoji Saito

    Kyoto University, Japan

Abstract

Let be a spin Riemann surface – a Riemann surface together with a halfcanonical bundle (4.1) – of genus . By using infinite dimensional representations of the fundamental group of , we obtain many local systems on , which taken together define a resolution of the halfcanonical ring of and indicate a non-abelian theory of abelian integrals on . The work has a root in a study of the complex structure on the Fricke moduli space [14].

Cite this article

Kyoji Saito, A Generalization of Eichler Integrals and Certain Local Systems over Spin Riemann Surfaces. Publ. Res. Inst. Math. Sci. 27 (1991), no. 3, pp. 431–460

DOI 10.2977/PRIMS/1195169663