Fourier Hyperfunctions as the Boundary Values of Smooth Solutions of Heat Equations

  • Kwang Whoi Kim

    Jeonju University, South Korea
  • Soon-Yeong Chung

    Sogang University, Seoul, South Korea
  • Dohan Kim

    Seoul National University, South Korea

Abstract

We show that if a -solution of heat equation in does not increase faster than then its boundary value determines a unique Fourier hyperfunction. Also, we prove the decomposition theorem for the Fourier hyper functions. These results generalize the theorems of T. Kawai and T. Matsuzawa for Fourier hyperfunctions and solve a question given by A. Kaneko.

Cite this article

Kwang Whoi Kim, Soon-Yeong Chung, Dohan Kim, Fourier Hyperfunctions as the Boundary Values of Smooth Solutions of Heat Equations. Publ. Res. Inst. Math. Sci. 29 (1993), no. 2, pp. 289–300

DOI 10.2977/PRIMS/1195167274