Euler–Poincaré Characteristic and Polynomial Representations of Iwahori–Hecke Algebras
Gérard H. E. Duchamp
Université Paris-Nord, Villetaneuse, FranceDaniel Krob
Université Paris 7, FranceAlain Lascoux
Université de Paris-Est, Marne-la-Vallée, FranceBernard Leclerc
Université de Caen, FranceThomas Scharf
Universität Bayreuth, GermanyJean-Yves Thibon
Universität Bayreuth, Germany
Abstract
The Hecke algebras of type admit faithful representations by symmetrization operators acting on polynomial rings. These operators are related to the geometry of flag manifolds and in particular to a generalized Euler–Poincaré characteristic denned by Hirzebruch. They provide -idempotents, together with a simple way to describe the irreducible representations of the Hecke algebra. The link with Kazhdan–Lusztig representations is discussed. We specially detail the case of hook representations, and as an application, we investigate the hamiltonian of a quantum spin chain with symmetry.
Cite this article
Gérard H. E. Duchamp, Daniel Krob, Alain Lascoux, Bernard Leclerc, Thomas Scharf, Jean-Yves Thibon, Euler–Poincaré Characteristic and Polynomial Representations of Iwahori–Hecke Algebras. Publ. Res. Inst. Math. Sci. 31 (1995), no. 2, pp. 179–201
DOI 10.2977/PRIMS/1195164438