Operator Convex Functions of Several Variables
Frank Hansen
University of Copenhagen, Denmark
Abstract
The functional calculus for functions of several variables associates to each tuple of selfadjoint operators on Hilbert spaces an operator in the tensor product . We introduce the notion of generalized Hessian matrices associated with f. Those matrices are used as the building blocks of a structure theorem for the second Fréchet differential of the map . As an application we derive that functions with positive semi-definite generalized Hessian matrices of arbitrary order are operator convex. The result generalizes a theorem of Kraus [15] for functions of one variable.
Cite this article
Frank Hansen, Operator Convex Functions of Several Variables. Publ. Res. Inst. Math. Sci. 33 (1997), no. 3, pp. 443–463
DOI 10.2977/PRIMS/1195145324