Operator Convex Functions of Several Variables

  • Frank Hansen

    University of Copenhagen, Denmark

Abstract

The functional calculus for functions of several variables associates to each tuple of selfadjoint operators on Hilbert spaces an operator in the tensor product . We introduce the notion of generalized Hessian matrices associated with f. Those matrices are used as the building blocks of a structure theorem for the second Fréchet differential of the map . As an application we derive that functions with positive semi-definite generalized Hessian matrices of arbitrary order are operator convex. The result generalizes a theorem of Kraus [15] for functions of one variable.

A correction to this paper is available.

Cite this article

Frank Hansen, Operator Convex Functions of Several Variables. Publ. Res. Inst. Math. Sci. 33 (1997), no. 3, pp. 443–463

DOI 10.2977/PRIMS/1195145324