JournalsprimsVol. 46, No. 3pp. 565–590

Low Energy Asymptotics of the Spectral Shift Function for Pauli Operators with Nonconstant Magnetic Fields

  • Georgi Raikov

    Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
Low Energy Asymptotics of the Spectral Shift Function for Pauli Operators with Nonconstant Magnetic Fields cover
Download PDF

Abstract

We consider the 3D Pauli operator with nonconstant magnetic field B of constant direction, perturbed by a symmetric matrix-valued electric potential V whose coefficients decay fast enough at infi nity. We investigate the low-energy asymptotics of the corresponding spectral shift function. As a corollary, for generic negative V , we obtain a generalized Levinson formula, relating the low-energy asymptotics of the eigenvalue counting function and of the scattering phase of the perturbed operator.

Cite this article

Georgi Raikov, Low Energy Asymptotics of the Spectral Shift Function for Pauli Operators with Nonconstant Magnetic Fields. Publ. Res. Inst. Math. Sci. 46 (2010), no. 3, pp. 565–590

DOI 10.2977/PRIMS/18