Symplectic submanifolds in dimension 6 from hyperelliptic Lefschetz fibrations

  • Takahiro Oba

    The University of Osaka, Toyonaka, Japan
Symplectic submanifolds in dimension 6 from hyperelliptic Lefschetz fibrations cover
Download PDF

A subscription is required to access this article.

Abstract

We provide a closed, simply connected, symplectic -manifold having infinitely many codimension symplectic submanifolds. These are mutually homologous but homotopy inequivalent, and furthermore, they cannot admit complex structures. The key ingredient for the construction is hyperelliptic Lefschetz fibrations on -manifolds. As a corollary, we present a similar result on symplectic submanifolds of codimension in higher dimensions. In the appendix, we give a proof of the well-known fact that all symplectic submanifolds of codimension in of a fixed degree are mutually diffeomorphic.

Cite this article

Takahiro Oba, Symplectic submanifolds in dimension 6 from hyperelliptic Lefschetz fibrations. Quantum Topol. (2025), published online first

DOI 10.4171/QT/235