Convergence and rate of approximation in BVφ(R+N)BV^{\varphi}(\mathbb R^N_+) for a class of Mellin integral operators

  • Laura Angeloni

    Università degli Studi di Perugia, Italy
  • Gianluca Vinti

    Università degli Studi di Perugia, Italy

Abstract

In this paper we study convergence results and rate of approximation for a family of linear integral operators of Mellin type in the frame of BVφ(R+N)BV^{\varphi}(\mathbb R^N_+). Here BVφ(R+N)BV^{\varphi}(\mathbb R^N_+) denotes the space of functions with bounded φ\varphi-variation on R+N\mathbb R^N_+, defined by means of a concept of multidimensional φ\varphi-variation in the sense of Tonelli.

Cite this article

Laura Angeloni, Gianluca Vinti, Convergence and rate of approximation in BVφ(R+N)BV^{\varphi}(\mathbb R^N_+) for a class of Mellin integral operators. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 25 (2014), no. 3, pp. 217–232

DOI 10.4171/RLM/675