On special covariants in the exterior algebra of a simple Lie algebra
Corrado De Concini
Università di Roma La Sapienza, ItalyPierluigi Möseneder Frajria
Politecnico di Milano, Campus Como, ItalyPaolo Papi
Università di Roma La Sapienza, ItalyClaudio Procesi
Università di Roma La Sapienza, Italy
Abstract
We study the subspace of the exterior algebra of a simple complex Lie algebra linearly spanned by the copies of the little adjoint representation or, in the case of the Lie algebra of traceless matrices, by the copies of the -th symmetric power of the defining representation. As main result we prove that this subspace is a free module over the subalgebra of the exterior algebra generated by all primitive invariants except the one of highest degree.
Cite this article
Corrado De Concini, Pierluigi Möseneder Frajria, Paolo Papi, Claudio Procesi, On special covariants in the exterior algebra of a simple Lie algebra. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 25 (2014), no. 3, pp. 331–344
DOI 10.4171/RLM/682