The Sobolev class where a weak solution is a local minimizer
Filomena De Filippis
Università di L’Aquila, ItalyFrancesco Leonetti
Università di L'Aquila, ItalyPaolo Marcellini
Università di Firenze, ItalyElvira Mascolo
Università di Firenze, Italy
Abstract
The aim of this paper is to propose some results which we hope could contribute to understand better Lavrentiev's phenomenon for energy integrals as in (1.1) under some -growth conditions as in (1.2); in fact, we expect that Lavrentiev's phenomenon does not occur if the quotient is not too large in dependence of , for instance, as in the cases – either scalar or vectorial ones – that we consider in this manuscript.
Cite this article
Filomena De Filippis, Francesco Leonetti, Paolo Marcellini, Elvira Mascolo, The Sobolev class where a weak solution is a local minimizer. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 34 (2023), no. 2, pp. 451–463
DOI 10.4171/RLM/1014