Lipschitz continuity for energy integrals with variable exponents

  • Michela Eleuteri

    Università di Firenze, Italy
  • Paolo Marcellini

    Università di Firenze, Italy
  • Elvira Mascolo

    Università di Firenze, Italy

Abstract

A regularity result for integrals of the Calculus of Variations with variable exponents is presented. Precisely, we prove that any vector-valued minimizer of an energy integral over an open set , with variable exponent in the Sobolev class for some , is locally Lipschitz continuous in and an a priori estimate holds.

Cite this article

Michela Eleuteri, Paolo Marcellini, Elvira Mascolo, Lipschitz continuity for energy integrals with variable exponents. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 27 (2016), no. 1, pp. 61–87

DOI 10.4171/RLM/723