Lipschitz continuity for energy integrals with variable exponents
Michela Eleuteri
Università di Firenze, ItalyPaolo Marcellini
Università di Firenze, ItalyElvira Mascolo
Università di Firenze, Italy
Abstract
A regularity result for integrals of the Calculus of Variations with variable exponents is presented. Precisely, we prove that any vector-valued minimizer of an energy integral over an open set , with variable exponent in the Sobolev class for some , is locally Lipschitz continuous in and an a priori estimate holds.
Cite this article
Michela Eleuteri, Paolo Marcellini, Elvira Mascolo, Lipschitz continuity for energy integrals with variable exponents. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 27 (2016), no. 1, pp. 61–87
DOI 10.4171/RLM/723