Duality for weights on the real line
Luigi D'Onofrio
Università degli Studi di Napoli Parthenope, ItalyArturo Popoli
Università degli Studi di Napoli Federico II, ItalyRoberta Schiattarella
Università degli Studi di Napoli Federico II, Italy
Abstract
Under the same bounds on -constants and -constants, the optimal exponents for sharp inclusions between Gehring -class of weights and Muckenhoupt -class () are Hölder conjugate, if and are conjugate. This is a consequence of a representation theorem of weights in terms of -biSobolev maps and a duality result between and classes in dimension one. We prove also that sharp a priori bounds on constants correspond under the Hölder conjugate mapping .
Cite this article
Luigi D'Onofrio, Arturo Popoli, Roberta Schiattarella, Duality for weights on the real line. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 27 (2016), no. 3, pp. 287–308
DOI 10.4171/RLM/735