Duality for weights on the real line

  • Luigi D'Onofrio

    Università degli Studi di Napoli Parthenope, Italy
  • Arturo Popoli

    Università degli Studi di Napoli Federico II, Italy
  • Roberta Schiattarella

    Università degli Studi di Napoli Federico II, Italy

Abstract

Under the same bounds on -constants and -constants, the optimal exponents for sharp inclusions between Gehring -class of weights and Muckenhoupt -class () are Hölder conjugate, if and are conjugate. This is a consequence of a representation theorem of weights in terms of -biSobolev maps and a duality result between and classes in dimension one. We prove also that sharp a priori bounds on constants correspond under the Hölder conjugate mapping .

Cite this article

Luigi D'Onofrio, Arturo Popoli, Roberta Schiattarella, Duality for weights on the real line. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 27 (2016), no. 3, pp. 287–308

DOI 10.4171/RLM/735