# A transcendence criterion for infinite products

### Pietro Corvaja

Università di Udine, Italy### Jaroslav Hancl

University of Ostrava, Czech Republic

## Abstract

We prove a transcendence criterion for certain infinite products of algebraic numbers. Namely, for an increasing sequence of positive integers $a_n$ and an algebraic number $\alpha>1$, we consider the convergent infinite product $\prod_{n}([\alpha^{a_n}]/\alpha^{a_n})$, where $[\cdot]$ stands for the integral part. We prove (Thm. 1) that its value is transcendental, under certain hypothesis; Thm. 3 will show that such hypothesis are in a sense unavoidable.

## Cite this article

Pietro Corvaja, Jaroslav Hancl, A transcendence criterion for infinite products. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 18 (2007), no. 3, pp. 295–303

DOI 10.4171/RLM/496