On some geometric properties of currents and Frobenius theorem
Giovanni Alberti
Università di Pisa, ItalyAnnalisa Massaccesi
Universität Zürich, Switzerland
Abstract
In this note we announce some results, due to appear in [2], [3], on the structure of integral and normal currents, and their relation to Frobenius theorem. In particular we show that an integral current cannot be tangent to a distribution of planes which is nowhere involutive (Theorem 3.6), and that a normal current which is tangent to an involutive distribution of planes can be locally foliated in terms of integral currents (Theorem 4.3). This statement gives a partial answer to a question raised by Frank Morgan in [1].
Cite this article
Giovanni Alberti, Annalisa Massaccesi, On some geometric properties of currents and Frobenius theorem. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 28 (2017), no. 4, pp. 861–869
DOI 10.4171/RLM/788