A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws
Michiel Bertsch
Università di Roma Tor Vergata, ItalyFlavia Smarrazzo
Università Campus Bio-Medico di Roma, ItalyAndrea Terracina
Università di Roma La Sapienza, ItalyAlberto Tesei
Università di Roma La Sapienza, Italy

Abstract
We prove existence and uniqueness of Radon measure-valued solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, the initial data being a finite superposition of Dirac masses and the flux being Lipschitz continuous, bounded and sufficiently smooth. The novelty of the paper is the introduction of a compatibility condition which, combined with standard entropy conditions, guarantees uniqueness.
Cite this article
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei, A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 30 (2019), no. 1, pp. 137–168
DOI 10.4171/RLM/839