A Sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter
Dorin Bucur
Université Savoie Mont Blanc, Chambéry, FranceVincenzo Ferone
Università degli Studi di Napoli Federico II, ItalyCarlo Nitsch
Università degli Studi di Napoli Federico II, ItalyCristina Trombetti
Università degli Studi di Napoli Federico II, Italy
Abstract
In this paper we prove that the ball maximizes the first eigenvalue of the Robin Laplacian operator with negative boundary parameter, among all convex sets of Rn with prescribed perimeter. The key of the proof is a dearrangement procedure of the first eigenfunction of the ball on the level sets of the distance function to the boundary of the convex set, which controls the boundary and the volume energies of the Rayleigh quotient.
Cite this article
Dorin Bucur, Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti, A Sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 30 (2019), no. 4, pp. 665–676
DOI 10.4171/RLM/866