On Nichols algebras of infinite rank with finite Gelfand–Kirillov dimension
Nicolás Andruskiewitsch
Universidad Nacional de Córdoba, ArgentinaIván Ezequiel Angiono
Universidad Nacional de Córdoba, ArgentinaIstván Heckenberger
Universität Marburg, Germany
Abstract
We classify infinite-dimensional decomposable braided vector spaces arising from abelian groups whose components are either points or blocks such that the corresponding Nichols algebras have finite Gelfand–Kirillov dimension. In particular we exhibit examples where the Gelfand–Kirillov dimension attains any natural number greater than one.
Cite this article
Nicolás Andruskiewitsch, Iván Ezequiel Angiono, István Heckenberger, On Nichols algebras of infinite rank with finite Gelfand–Kirillov dimension. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 31 (2020), no. 1, pp. 81–101
DOI 10.4171/RLM/880