Duality and distance formulas in Lipschitz–Hölder spaces

  • Francesca Angrisani

    Università degli Studi di Napoli Federico II, Italy
  • Giacomo Ascione

    Università degli Studi di Napoli Federico II, Italy
  • Luigi D'Onofrio

    Università degli Studi di Napoli Parthenope, Italy
  • Gianluigi Manzo

    Università degli Studi di Napoli Federico II, Italy
Duality and distance formulas in Lipschitz–Hölder spaces cover
Download PDF

A subscription is required to access this article.

Abstract

For a compact metric space , the predual of can be identified with the normed space of finite (signed) Borel measures on equipped with the Kantorovich–Rubinstein norm, this is due to Kantorovich [20]. Here we deduce atomic decomposition of by mean of some results from [10]. It is also known, under suitable assumption, that there is a natural isometric isomorphism between and [15]. In this work we also show that the pair can be framed in the theory of type structures introduced by K. M. Perfekt.

Cite this article

Francesca Angrisani, Giacomo Ascione, Luigi D'Onofrio, Gianluigi Manzo, Duality and distance formulas in Lipschitz–Hölder spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 31 (2020), no. 2, pp. 401–419

DOI 10.4171/RLM/897