Duality and distance formulas in Lipschitz–Hölder spaces
Francesca Angrisani
Università degli Studi di Napoli Federico II, ItalyGiacomo Ascione
Università degli Studi di Napoli Federico II, ItalyLuigi D'Onofrio
Università degli Studi di Napoli Parthenope, ItalyGianluigi Manzo
Università degli Studi di Napoli Federico II, Italy
Abstract
For a compact metric space , the predual of can be identified with the normed space of finite (signed) Borel measures on equipped with the Kantorovich–Rubinstein norm, this is due to Kantorovich [20]. Here we deduce atomic decomposition of by mean of some results from [10]. It is also known, under suitable assumption, that there is a natural isometric isomorphism between and [15]. In this work we also show that the pair can be framed in the theory of type structures introduced by K. M. Perfekt.
Cite this article
Francesca Angrisani, Giacomo Ascione, Luigi D'Onofrio, Gianluigi Manzo, Duality and distance formulas in Lipschitz–Hölder spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 31 (2020), no. 2, pp. 401–419
DOI 10.4171/RLM/897