Well-posedness for a class of phase-field systems modeling prostate cancer growth with fractional operators and general nonlinearities
Pierluigi Colli
IMATI – C.N.R. Pavia, Italy; Università di PaviaGianni Gilardi
Università di Pavia; IMATI – C.N.R. Pavia, ItalyJürgen Sprekels
Humboldt-Universität zu Berlin; Weierstrass Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Abstract
This paper deals with a general system of equations and conditions arising from a mathematical model of prostate cancer growth with chemotherapy and antiangiogenic therapy that has been recently introduced and analyzed; see P. Colli et al. [Math. Models Methods Appl. Sci. 30 (2020), 1253–1295]. The related system includes two evolutionary operator equations involving fractional powers of selfadjoint, nonnegative, unbounded linear operators having compact resolvents. Both equations contain nonlinearities and, in particular, the equation describing the dynamics of the tumor phase variable has the structure of an Allen–Cahn equation with double-well potential and additional nonlinearity depending also on the other variable, which represents the nutrient concentration. The equation for the nutrient concentration is nonlinear as well, with a term coupling both variables. For this system we design an existence, uniqueness, and continuous dependence theory by setting up a careful analysis which allows the consideration of nonsmooth potentials and the treatment of continuous nonlinearities with general growth properties.
Cite this article
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels, Well-posedness for a class of phase-field systems modeling prostate cancer growth with fractional operators and general nonlinearities. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 33 (2022), no. 1, pp. 193–228
DOI 10.4171/RLM/969