Periodic solutions of Birkoff–Lewis type for the nonlinear wave equation
Luca Biasco
Università degli studi Roma Tre, ItalyLaura Di Gregorio
Università degli studi Roma Tre, Italy
Abstract
We prove existence and multiplicity of small amplitude periodic solutions with large period for the wave equation with small ‘mass’. Such solutions bifurcate from resonant finite dimensional invariant tori of the fourth order Birkhoff normal form of the associated hamiltonian system. The number of geometrically distinct solutions and their minimal periods tend to infinity when the ‘mass’ tends to zero.
Cite this article
Luca Biasco, Laura Di Gregorio, Periodic solutions of Birkoff–Lewis type for the nonlinear wave equation. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 17 (2006), no. 1, pp. 25–33
DOI 10.4171/RLM/452