Nodal solutions of nonlinear elliptic Dirichlet problems on radial domains
Thomas Bartsch
Universität Giessen, GermanyMarco Degiovanni
Università Cattolica del Sacro Cuore, Brescia, Italy
Abstract
Let be a ball or an annulus and absolutely continuous, superlinear, subcritical, and such that . We prove that the least energy nodal solution of , , is not radial. We also prove that Fučik eigenfunctions, i.e. solutions of , with eigenvalue on the first nontrivial curve of the Fučik spectrum, are not radial. A related result holds for asymmetric weighted eigenvalue problems. An essential ingredient is a quadratic form generalizing the Hessian of the energy functional at a solution. We give new estimates on the Morse index of this form at a radial solution. These estimates are of independent interest.
Cite this article
Thomas Bartsch, Marco Degiovanni, Nodal solutions of nonlinear elliptic Dirichlet problems on radial domains. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 17 (2006), no. 1, pp. 69–85
DOI 10.4171/RLM/454