Convexity of harmonic densities
David Benko
University of South Alabama, Mobile, USAPeter Dragnev
Indiana-Purdue University, Fort Wayne, USAVilmos Totik
University of Szeged, Hungary
Abstract
The convexity of the densities of harmonic measures is proven for subsets of a circle or of the real line. As a consequence, we get the convexity of the densities of equilibrium measures for compact sets lying on circles or the real axis.
Cite this article
David Benko, Peter Dragnev, Vilmos Totik, Convexity of harmonic densities. Rev. Mat. Iberoam. 28 (2012), no. 4, pp. 947–960
DOI 10.4171/RMI/698