JournalsrmiVol. 31, No. 1pp. 313–348

The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields

  • Patrice Abry

    École Normale Supérieure de Lyon, France
  • Marianne Clausel

    Université de Grenoble, Saint-Martin-d'Hères, France
  • Stéphane Jaffard

    Université Paris Est, Créteil, France
  • Stéphane G. Roux

    École Normale Supérieure de Lyon, France
  • Béatrice Vedel

    Université de Bretagne-Sud, Vannes, France
The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields cover
Download PDF

Abstract

Global and local regularity of functions in anisotropic function spaces is analyzed in the common framework provided by hyperbolic wavelet bases. Local and directional regularity features are characterized by means of global quantities derived from the coefficients of hyperbolic wavelet decompositions. A multifractal analysis is introduced, that jointly accounts for scale invariance and anisotropy, and its properties are investigated.

Cite this article

Patrice Abry, Marianne Clausel, Stéphane Jaffard, Stéphane G. Roux, Béatrice Vedel, The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields. Rev. Mat. Iberoam. 31 (2015), no. 1, pp. 313–348

DOI 10.4171/RMI/836