On the local geometry of the moduli space of -threefolds in

  • Elisabetta Colombo

    Università degli Studi di Milano, Milano, Italy
  • Paola Frediani

    Università degli Studi di Pavia, Pavia, Italy
  • Juan Carlos Naranjo

    Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Matemàtica, Bellaterra, Spain
  • Gian Pietro Pirola

    Università degli Studi di Pavia, Pavia, Italy
On the local geometry of the moduli space of $(2,2)$-threefolds in $\mathcal{A}_{9}$ cover
Download PDF

A subscription is required to access this article.

Abstract

We study the local geometry of the moduli space of intermediate Jacobians of -threefolds in . More precisely, we prove that a composition of the second fundamental form of the Siegel metric in restricted to this moduli space, with a natural multiplication map is a nonzero holomorphic section of a vector bundle. We also describe its kernel. We use the two conic bundle structures of these threefolds, Prym theory, gaussian maps and Jacobian ideals.

Cite this article

Elisabetta Colombo, Paola Frediani, Juan Carlos Naranjo, Gian Pietro Pirola, On the local geometry of the moduli space of -threefolds in . Rev. Mat. Iberoam. (2025), published online first

DOI 10.4171/RMI/1542