A Nash–Kuiper theorem for immersions of surfaces in 3 dimensions

  • Camillo De Lellis

    Universität Zürich, Switzerland
  • Dominik Inauen

    Universität Zürich, Switzerland
  • László Székelyhidi Jr.

    Universität Leipzig, Germany

Abstract

We prove that, given a Riemannian metric on the 2-dimensional disk , any short immersion of into can be uniformly approximated with isometric immersions for any . This statement improves previous results by Yu. F. Borisov and of a joint paper of the first and third author with S. Conti.

Cite this article

Camillo De Lellis, Dominik Inauen, László Székelyhidi Jr., A Nash–Kuiper theorem for immersions of surfaces in 3 dimensions. Rev. Mat. Iberoam. 34 (2018), no. 3, pp. 1119–1152

DOI 10.4171/RMI/1019