# A Nash–Kuiper theorem for $C^{1,\frac{1}{5}-\delta}$ immersions of surfaces in 3 dimensions

### Camillo De Lellis

Universität Zürich, Switzerland### Dominik Inauen

Universität Zürich, Switzerland### László Székelyhidi Jr.

Universität Leipzig, Germany

## Abstract

We prove that, given a $C^2$ Riemannian metric $g$ on the 2-dimensional disk $D_2$, any short $C^1$ immersion of $(D_2,g)$ into $\mathbb R^3$ can be uniformly approximated with $C^{1,\alpha}$ isometric immersions for any $\alpha < \frac{1}{5}$. This statement improves previous results by Yu. F. Borisov and of a joint paper of the first and third author with S. Conti.

## Cite this article

Camillo De Lellis, Dominik Inauen, László Székelyhidi Jr., A Nash–Kuiper theorem for $C^{1,\frac{1}{5}-\delta}$ immersions of surfaces in 3 dimensions. Rev. Mat. Iberoam. 34 (2018), no. 3, pp. 1119–1152

DOI 10.4171/RMI/1019