Dislocations of arbitrary topology in Coulomb eigenfunctions
Alberto Enciso
Consejo Superior de Investigaciones Científicas, Madrid, SpainDavid Hartley
Consejo Superior de Investigaciones Científicas, Madrid, SpainDaniel Peralta-Salas
Consejo Superior de Investigaciones Científicas, Madrid, Spain
Abstract
For any finite link in we prove the existence of a complex-valued eigenfunction of the Coulomb Hamiltonian such that its nodal set contains a union of connected components diffeomorphic to . This problem goes back to Berry, who constructed such eigenfunctions in the case where is the trefoil knot or the Hopf link and asked the question about the general result.
Cite this article
Alberto Enciso, David Hartley, Daniel Peralta-Salas, Dislocations of arbitrary topology in Coulomb eigenfunctions. Rev. Mat. Iberoam. 34 (2018), no. 3, pp. 1361–1371
DOI 10.4171/RMI/1026