A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps

  • Zhen-Qing Chen

    University of Washington, Seattle, United States
  • Takashi Kumagai

    Kyoto University, Japan

Abstract

In this paper, we consider the following type of non-local (pseudo-differential) operators on : \begin{align*} \mathcal{L} u(x) = \frac{1}{2} \sum_{i, j=1}^d \frac{\partial}{\partial x_i} \Big(a_{ij}(x) \frac{\partial u(x)}{\partial x_j}\Big) \\+ \lim_{\varepsilon \downarrow 0} \int_{\{y\in \mathbb{R}^d: |y-x|>\varepsilon\}} (u(y)-u(x)) J(x, y) dy, \end{align*} where is a measurable matrix-valued function on that is uniformly elliptic and bounded and is a symmetric measurable non-trivial non-negative kernel on satisfying certain conditions. Corresponding to is a symmetric strong Markov process on that has both the diffusion component and pure jump component. We establish a priori Hölder estimate for bounded parabolic functions of and parabolic Harnack principle for positive parabolic functions of . Moreover, two-sided sharp heat kernel estimates are derived for such operator and jump-diffusion . In particular, our results apply to the mixture of symmetric diffusion of uniformly elliptic divergence form operator and mixed stable-like processes on . To establish these results, we employ methods from both probability theory and analysis.

Cite this article

Zhen-Qing Chen, Takashi Kumagai, A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev. Mat. Iberoam. 26 (2010), no. 2, pp. 551–589

DOI 10.4171/RMI/609