Le Théorème du symbole total d'un opérateur différentiel -adique
Zoghman Mebkhout
Université Paris 7 Denis Diderot, FranceLuis Narváez Macarro
Universidad de Sevilla, Spain

Abstract
Let be a smooth -scheme (in the sense of Meredith) over a complete discrete valuation ring of unequal characteristics and let be the sheaf of -linear endomorphisms of whose reduction modulo is a linear differential operator of order bounded by an affine function in . In this paper we prove that locally there is an -isomorphism between the sections of and the overconvergent total symbols, and we deduce a cohomological triviality property.
Cite this article
Zoghman Mebkhout, Luis Narváez Macarro, Le Théorème du symbole total d'un opérateur différentiel -adique. Rev. Mat. Iberoam. 26 (2010), no. 3, pp. 825–859
DOI 10.4171/RMI/618