Bound state solutions for a class of nonlinear Schrödinger equations
Denis Bonheure
Université libre de Bruxelles, BelgiumJean Van Schaftingen
Université Catholique de Louvain, Belgium
Abstract
We deal with the existence of positive bound state solutions for a class of stationary nonlinear Schrödinger equations of the form $$ -\varepsilon^2\Delta u + V(x) u = K(x) u^p,\qquad x\in\mathbb{R}^N, V, Kp > 1VK\varepsilon\sim 0\mathcal{A} = V^\theta K^{-\frac{2}{p-1}}\theta=(p+1)/(p-1)-N/2\varepsilon$ goes to zero.
Cite this article
Denis Bonheure, Jean Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations. Rev. Mat. Iberoam. 24 (2008), no. 1, pp. 297–351
DOI 10.4171/RMI/537