Bound state solutions for a class of nonlinear Schrödinger equations

  • Denis Bonheure

    Université libre de Bruxelles, Belgium
  • Jean Van Schaftingen

    Université Catholique de Louvain, Belgium

Abstract

We deal with the existence of positive bound state solutions for a class of stationary nonlinear Schrödinger equations of the form $$ -\varepsilon^2\Delta u + V(x) u = K(x) u^p,\qquad x\in\mathbb{R}^N, V, Kp > 1VK\varepsilon\sim 0\mathcal{A} = V^\theta K^{-\frac{2}{p-1}}\theta=(p+1)/(p-1)-N/2\varepsilon$ goes to zero.

Cite this article

Denis Bonheure, Jean Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations. Rev. Mat. Iberoam. 24 (2008), no. 1, pp. 297–351

DOI 10.4171/RMI/537