# On uniqueness of automorphisms groups of Riemann surfaces

### Maximiliano Leyton A.

Université Grenoble I, Saint-Martin-d'Hères, France### Rubén A. Hidalgo

Universidad Técnica Federico Santa María, Valparaíso, Chile

## Abstract

Let $\gamma, r, s$, $\geq 1$ be non-negative integers. If $p$ is a prime sufficiently large relative to the values $\gamma$, $r$ and $s$, then a group $H$ of conformal automorphisms of a closed Riemann surface $S$ of order $p^{s}$ so that $S/H$ has signature $(\gamma,r)$ is the unique such subgroup in $\mathrm{Aut}(S)$. Explicit sharp lower bounds for $p$ in the case $(\gamma,r,s) \in \{(1,2,1),(0,4,1)\}$ are provided. Some consequences are also derived.

## Cite this article

Maximiliano Leyton A., Rubén A. Hidalgo, On uniqueness of automorphisms groups of Riemann surfaces. Rev. Mat. Iberoam. 23 (2007), no. 3, pp. 793–810

DOI 10.4171/RMI/513