# The existence of positive solution to some asymptotically linear elliptic equations in exterior domains

### Gongbao Li

Huazhong Normal University, Wuhan, China### Gao-Feng Zheng

Huazhong Normal University, Wuhan, China

## Abstract

In this paper, we are concerned with the asymptotically linear elliptic problem $-\Delta u+ \lambda_{0}u=f(u), u\in H_{0}^{1}(\Omega )$ in an exterior domain $\Omega= \mathbb{R}^{N}\setminus\overline{\mathcal{O}} \left( N\geqslant 3\right)$ with $\mathcal{O}$ a smooth bounded and star-shaped open set, and $\lim_{t\rightarrow +\infty }\frac{ f(t)}{t}=l$, $0<l<+\infty$. Using a precise deformation lemma and algebraic topology argument, we prove under our assumptions that the problem possesses at least one positive solution.

## Cite this article

Gongbao Li, Gao-Feng Zheng, The existence of positive solution to some asymptotically linear elliptic equations in exterior domains. Rev. Mat. Iberoam. 22 (2006), no. 2, pp. 559–590

DOI 10.4171/RMI/466