# Existence of H-bubbles in a perturbative setting

### Paolo Caldiroli

Università degli Studi di Torino, Italy### Roberta Musina

Università di Udine, Italy

## Abstract

Given a $C^{1}$ function $H: \mathbb{R}^3 \to \mathbb{R}$, we look for $H$-bubbles, i.e., surfaces in $\mathbb{R}^3$ parametrized by the sphere $\mathbb{S}^2$ with mean curvature $H$ at every regular point. Here we study the case $H(u)=H_{0}(u)+\epsilon H_{1}(u)$ where $H_{0}$ is some "good" curvature (for which there exist $H_{0}$-bubbles with minimal energy, uniformly bounded in $L^{\infty}$), $\epsilon$ is the smallness parameter, and $H_{1}$ is {\em any} $C^{1}$ function.

## Cite this article

Paolo Caldiroli, Roberta Musina, Existence of H-bubbles in a perturbative setting. Rev. Mat. Iberoam. 20 (2004), no. 2, pp. 611–626

DOI 10.4171/RMI/402