Minimal Resolutions of Lattice Ideals and Integer Linear Programming
Emilio Briales-Morales
Universidad de Sevilla, SpainAntonio Campillo-López
Universidad de Valladolid, SpainPilar Pisón-Casares
Universidad de Sevilla, SpainAlberto Vigneron-Tenorio
Universidad de Cádiz, Jerez de la Frontera, Spain
Abstract
A combinatorial description of the minimal free resolution of a lattice ideal allows us to the connection of Integer Linear Programming and Algebra. The non null reduced homology spaces of some simplicial complexes are the key. The extremal rays of the associated cone reduce the number of variables.
Cite this article
Emilio Briales-Morales, Antonio Campillo-López, Pilar Pisón-Casares, Alberto Vigneron-Tenorio, Minimal Resolutions of Lattice Ideals and Integer Linear Programming. Rev. Mat. Iberoam. 19 (2003), no. 2, pp. 287–306
DOI 10.4171/RMI/347