Minimal Resolutions of Lattice Ideals and Integer Linear Programming

  • Emilio Briales-Morales

    Universidad de Sevilla, Spain
  • Antonio Campillo-López

    Universidad de Valladolid, Spain
  • Pilar Pisón-Casares

    Universidad de Sevilla, Spain
  • Alberto Vigneron-Tenorio

    Universidad de Cádiz, Jerez de la Frontera, Spain

Abstract

A combinatorial description of the minimal free resolution of a lattice ideal allows us to the connection of Integer Linear Programming and Algebra. The non null reduced homology spaces of some simplicial complexes are the key. The extremal rays of the associated cone reduce the number of variables.

Cite this article

Emilio Briales-Morales, Antonio Campillo-López, Pilar Pisón-Casares, Alberto Vigneron-Tenorio, Minimal Resolutions of Lattice Ideals and Integer Linear Programming. Rev. Mat. Iberoam. 19 (2003), no. 2, pp. 287–306

DOI 10.4171/RMI/347