On fractional differentiation and integration on spaces of homogeneous type
A. Eduardo Gatto
DePaul University, Chicago, USACarlos Segovia
Universidad de Buenos Aires, ArgentinaStephen Vági
DePaul University, Chicago, USA
Abstract
In this paper we define derivatives of fractional order on spaces of homogeneous type by generalizing a classical formula for the fractional powers of the Laplacean [S1], [S2], [SZ] and introducing suitable quasidistances related to an approximation of the identity. We define integration of fractional order as in [GV] but using quasidistances related to the approximation of the identity mentioned before.
We show that these operators act on Lipschitz spaces as in the classical cases. We prove that the composition of a fractional integral and a fractional derivative of the same order and its transpose (a fractional derivative composed with a fractional integral of the same order) are Calderón-Zygmund operators. We also prove that for small order a, is an invertible operator in . In order to prove that is invertible we obtain Nahmod type representations for and and then we follow the method of her thesis [N1], [N2].
Cite this article
A. Eduardo Gatto, Carlos Segovia, Stephen Vági, On fractional differentiation and integration on spaces of homogeneous type. Rev. Mat. Iberoam. 12 (1996), no. 1, pp. 111–145
DOI 10.4171/RMI/196