The regularity problem for degenerate elliptic operators in weighted spaces
Pascal Auscher
Université Paris-Saclay, Orsay, FranceLi Chen
Louisiana State University, Baton Rouge, USAJosé María Martell
Consejo Superior de Investigaciones Científicas, Madrid, SpainCruz Prisuelos-Arribas
Universidad de Alcalá de Henares, Madrid, Spain
Abstract
We study the solvability of the regularity problem for degenerate elliptic operators in the block case for data in weighted spaces. More precisely, let be a degenerate elliptic operator with degeneracy given by a fixed weight in , and consider the associated block second order degenerate elliptic problem in the upper-half space . We obtain non-tangential bounds for the full gradient of the solution of the block case operator given by the Poisson semigroup in terms of the gradient of the boundary data. All this is done in the spaces , where is a Muckenhoupt weight with respect to the underlying natural weighted space . We recover earlier results in the non-degenerate case (when , and with or without weight ). Our strategy is also different and more direct thanks in particular to recent observations on change of angles in weighted square function estimates and non-tangential maximal functions. Our method gives as a consequence the (unweighted) -solvability of the regularity problem for the block operator
for any complex-valued uniformly elliptic matrix and for all , where depends just on the dimension and the ellipticity constants of .
Cite this article
Pascal Auscher, Li Chen, José María Martell, Cruz Prisuelos-Arribas, The regularity problem for degenerate elliptic operators in weighted spaces. Rev. Mat. Iberoam. 39 (2023), no. 2, pp. 563–610
DOI 10.4171/RMI/1357