Conic Sheaves on Subanalytic Sites and Laplace Transform

  • Luca Prelli

    Università di Padova, Italy


Let be a dimensional complex vector space and let be its dual. We construct the conic sheaves and of tempered and Whitney holomorphic functions respectively and we give a sheaf theoretical interpretation of the Laplace isomorphisms of [10] which give the isomorphisms in the derived category \( \mathcal O^{t\land}_{E_{{\mathbb{R}^{{\scriptscriptstyle{+}}}}}}[n] \simeq \mathcal O^t_{E^*_{{\mathbb{R}^{{\scriptscriptstyle{+}}}}}} \) and \( \mathcal O^{\mathrm{w}\land}_{E_{{\mathbb{R}^{{\scriptscriptstyle{+}}}}}}[n] \simeq \mathcal O^{\mathrm{w}}_{E^*_{{\mathbb{R}^{{\scriptscriptstyle{+}}}}}} \).

Cite this article

Luca Prelli, Conic Sheaves on Subanalytic Sites and Laplace Transform. Rend. Sem. Mat. Univ. Padova 125 (2011), pp. 173–206

DOI 10.4171/RSMUP/125-11