JournalsrsmupVol. 121pp. 93–119

Sectional Invariants of Scroll over a Smooth Projective Variety

  • Yoshiaki Fukuma

    Kochi University, Japan
Sectional Invariants of Scroll over a Smooth Projective Variety cover
Download PDF

Abstract

Let X be a smooth complex variety of dimension n and let E be an ample vector bundle of rank r on X. Then we calculate the i_th sectional Euler number ei(PX(E),H(E)) for i ≥ 2_n - 3 or i = 1, and the i_th sectional Hodge number of type (j,i - j) hi i-j(PX(E),H(E)) for i ≥ 2_n - 1 and 0 ≤ ji, where PX(E) is the projective space bundle associated with E and H(E) is its tautological line bundle. Moreover we define a new invariant v(X,E) for rn - 1. This invariant is thought to be a generalization of curve genus. We will investigate some properties of this invariant.

Cite this article

Yoshiaki Fukuma, Sectional Invariants of Scroll over a Smooth Projective Variety. Rend. Sem. Mat. Univ. Padova 121 (2009), pp. 93–119

DOI 10.4171/RSMUP/121-6