Etude du Spectre Pour Certains Noyaux sur un Arbre
Ferdaous Kellil
ISIMM, Université de Monastir, TunisiaGuy Rousseau
Université de Lorraine, Vandoeuvre lès Nancy, France
Abstract
We study in this paper the spectrum of some kernels acting on a locally finite tree, in particular those associated to an isotropic random walk on the tree with jumps of length 0, 1 or 2. Such a kernel is a function R on S_×_S where S is the set of vertices of the tree, it acts on lr(S). We always assume the kernel R to be invariant under the action of a group Λ of authomorphisms almost transitive on S. This work generalizes results of A. Figa Talamanca and T. Steger who deal with homogeneous trees and a fixed group Λ, simply transitive on S; it shows the diversity of the spectrum depending on the invariance group.
Cite this article
Ferdaous Kellil, Guy Rousseau, Etude du Spectre Pour Certains Noyaux sur un Arbre. Rend. Sem. Mat. Univ. Padova 120 (2008), pp. 29–44
DOI 10.4171/RSMUP/120-2