On the Sylvester–Gallai theorem for conics

Abstract

In the present note we give a new proof of a result due to Wiseman and Wilson [13] which establishes an analogue of the Sylvester–Gallai theorem valid for curves of degree two. The main ingredients of the proof come from algebraic geometry. Specically, we use Cremona transformation of the projective plane and Hirzebruch inequality (1).

Cite this article

Adam Czapliński, Marcin Dumnicki, Łucja Farnik, Janusz Gwoździewicz, Magdalena Lampa-Baczyńska, Grzegorz Malara, Tomasz Szemberg, Justyna Szpond, Halszka Tutaj-Gasińska, On the Sylvester–Gallai theorem for conics. Rend. Sem. Mat. Univ. Padova 136 (2016), pp. 191–203

DOI 10.4171/RSMUP/136-13