Algèbres de distributions et -modules arithmétiques

  • Christine Huyghe

    Université de Strasbourg, France
  • Tobias Schmidt

    Université de Rennes I, France

Abstract

Let be a prime number, a complete discrete valuation ring of unequal caracteristics , a smooth affine algebraic group over Spec . Using partial divided powers techniques of Berthelot, we construct arithmetic distribution algebras, with level , generalizing the classical construction of the distribution algebra. We also construct the weak completion of the classical distribution algebra over a finite extension of . We then show that these distribution algebras can be identified with invariant arithmetic differential operators over , and prove a coherence result when the ramification index of is .

Cite this article

Christine Huyghe, Tobias Schmidt, Algèbres de distributions et -modules arithmétiques. Rend. Sem. Mat. Univ. Padova 139 (2018), pp. 1–76

DOI 10.4171/RSMUP/139-1