Countable recognizability and residual properties of groups
Francesco de Giovanni
Università degli Studi di Napoli Federico II, ItalyMarco Trombetti
Università degli Studi di Napoli Federico II, Italy
Abstract
A class of groups is said to be countably recognizable if a group belongs to whenever all its countable subgroups lie in . It is proved here that the class of groups whose subgroups are closed in the profinite topology is countably recognizable. Moreover, countably detectable properties of the finite residual of a group are studied.
Cite this article
Francesco de Giovanni, Marco Trombetti, Countable recognizability and residual properties of groups. Rend. Sem. Mat. Univ. Padova 140 (2018), pp. 69–80
DOI 10.4171/RSMUP/3