JournalszaaVol. 20, No. 2pp. 379–394

On the Asymptotic Behaviour of the Integral \int^{\infty}_0 e^{itx} (\frac {1}{x^{\alpha}} – \frac {1}{[x^{\alpha}]+1} dx (t \rightarrow 0) and Rates of Convergence to α\alpha-Stable Limit Laws

  • Lothar Heinrich

    Universität Augsburg, Germany
On the Asymptotic Behaviour of the Integral $$\int^{\infty}_0 e^{itx} (\frac {1}{x^{\alpha}} – \frac {1}{[x^{\alpha}]+1} dx (t \rightarrow 0)$$ and Rates of Convergence to $\alpha$-Stable Limit Laws cover
Download PDF

Cite this article

Lothar Heinrich, On the Asymptotic Behaviour of the Integral \int^{\infty}_0 e^{itx} (\frac {1}{x^{\alpha}} – \frac {1}{[x^{\alpha}]+1} dx (t \rightarrow 0) and Rates of Convergence to α\alpha-Stable Limit Laws. Z. Anal. Anwend. 20 (2001), no. 2, pp. 379–394

DOI 10.4171/ZAA/1022