On the Asymptotic Behaviour of the Integral and Rates of Convergence to -Stable Limit Laws
Lothar Heinrich
Universität Augsburg, Germany
![On the Asymptotic Behaviour of the Integral $$\int^{\infty}_0 e^{itx} (\frac {1}{x^{\alpha}} – \frac {1}{[x^{\alpha}]+1} dx (t \rightarrow 0)$$ and Rates of Convergence to $\alpha$-Stable Limit Laws cover](/_next/image?url=https%3A%2F%2Fcontent.ems.press%2Fassets%2Fpublic%2Fimages%2Fserial-issues%2Fcover-zaa-volume-20-issue-2.png&w=3840&q=90)
Cite this article
Lothar Heinrich, On the Asymptotic Behaviour of the Integral \int^{\infty}_0 e^{itx} (\frac {1}{x^{\alpha}} – \frac {1}{[x^{\alpha}]+1} dx (t \rightarrow 0) and Rates of Convergence to -Stable Limit Laws. Z. Anal. Anwend. 20 (2001), no. 2, pp. 379–394
DOI 10.4171/ZAA/1022