A Characterization of the Dependence of the Riemannian Metric on the Curvature Tensor by Young Symmetrizers
Bernold Fiedler
Freie Universität Berlin, Germany
Abstract
In differential geometry several differential equation systems are known which allow the determination of the Riemannian metric from the curvature tensor in normal coordinates. We consider two of such differential equation systems. The first system used by Gunther [8] yields a power series of the metric the coefficients of which depend on the covariant derivatives of the curvature tensor symmetrized in a certain manner. The second system, the so-called Herglotz relations [9], leads to a power series of the metric depending on symmetrized partial derivatives of the curvature tensor.
We determine a left ideal of the group ring of the symmetric group which is associated with the partial derivatives of the curvature tensor of order and construct a decomposition of this left ideal into three minimal left ideals using Young symmetrizers and the Littlewood-Richardson rule. Exactly one of these minimal left ideals characterizes the so-called essential part of on which the metric really depends via the Herglotz relations. We give examples of metrics with and without a non-essential part of . Applying our results to the covariant derivatives of the curvature tensor we can show that the algebra of tensor polynomials generated by and the algebra generated by fulfil .
Cite this article
Bernold Fiedler, A Characterization of the Dependence of the Riemannian Metric on the Curvature Tensor by Young Symmetrizers. Z. Anal. Anwend. 17 (1998), no. 1, pp. 135–157
DOI 10.4171/ZAA/813