JournalszaaVol. 17, No. 1pp. 229–242

Essential Properties of LL^{\infty}-functions

  • U. Felgenhauer

    Brandenburgische Technische Universität Cottbus, Germany
  • M. Wagner

    Brandenburgische Technische Universität Cottbus, Germany
Essential Properties of $L^{\infty}$-functions cover
Download PDF


The paper deals with local characteristics of LL^{\infty}-elements given as equivalence classes of measurable, essentially bounded functions f:RmRf: \mathbb R^m \to \mathbb R. Besides of essential lower and upper limit functions we introduce a new set-valued map carrying the information on a class, the essential limit set at a point, and analyze their main properties. Criteria for qualifying the continuity of function representatives are appended. The results can be applied e.g. in control theory to intcrprete "almost everywhere" conditions.

Cite this article

U. Felgenhauer, M. Wagner, Essential Properties of LL^{\infty}-functions. Z. Anal. Anwend. 17 (1998), no. 1, pp. 229–242

DOI 10.4171/ZAA/818